Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Differences in human placental mesenchymal stromal cells may impair vascular function in FGR.

Reproduction 2021 September 9
Placentae from pregnancies with foetal growth restriction (FGR) exhibit poor oxygen and nutrient exchange, in part due to impaired placental vascular development. Placental mesenchymal stromal cells (pMSCs) reside in a perivascular niche, where they may influence blood vessel formation/function. However, the role of pMSCs in vascular dysfunction in FGR is unclear. To elucidate the mechanisms by which pMSCs may impact placental vascularisation we compared the transcriptomes of human pMSCs isolated from FGR (<5th centile) (n = 7) and gestation-matched control placentae (n = 9) using Affymetrix microarrays. At the transcriptome level, there were no statistically significant differences between normal and FGR pMSCs; however, several genes linked to vascular function exhibited notable fold changes, and thus the dataset was used as a hypothesis-generating tool for possible dysfunction in FGR. Genes/proteins of interest were followed up by real-time PCR, western blot and immunohistochemistry. Gene expression of ADAMTS1 and FBLN2 (fibulin-2) were significantly upregulated, whilst HAS2 (hyaluronan synthase-2) was significantly downregulated, in pMSCs from FGR placentae (n = 8) relative to controls (n = 7, P < 0.05 for all). At the protein level, significant differences in the level of fibulin-2 and hyaluronan synthase-2, but not ADAMTS1, were confirmed between pMSCs from FGR and control pregnancies by Western blot. All three proteins demonstrated perivascular expression in third-trimester placentae. Fibulin-2 maintains vessel elasticity, and its increased expression in FGR pMSCs could help explain the increased distensibility of FGR blood vessels. ADAMTS1 and hyaluronan synthase-2 regulate angiogenesis, and their differential expression by FGR pMSCs may contribute to the impaired angiogenesis in these placentae.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app