Add like
Add dislike
Add to saved papers

Acute heat stress reduces viability but increases lactate secretion of porcine immature Sertoli cells through transcriptome reprogramming.

Theriogenology 2021 August 10
Sertoli cells, important constituents of the somatic niche, supports the growth and development of spermatogonia. Heat stress (HS), among multiple intrinsic and external factors, can induce physiological and biochemical changes in Sertoli cells. However, the underlying molecular mechanism remains largely unclear. Here, we showed that acute heat stress (43 °C, 0.5 h) could reduce cell viability, promote apoptosis, and increase the lactate production of porcine immature Sertoli cells (iSCs) cultured in vitro. Then, transcriptome sequencing identified 126 immediately and 3372 prolonged responded differentially expressed genes (DEGs) after acute heat stress (43 °C, 0.5 h) (HS0.5), and 36 h recovery culture following heat stress (HS0.5-R36), respectively. Enrichment analyses found different signaling pathways: immediate changes including cell response to heat, regulation of cellular response to stress, heat shock protein binding, chaperon-mediated protein folding, and sterol biosynthetic process, but prolonged changes mainly involving cell cycle, regulation of apoptotic process/cell proliferation, reproductive process, P53, PI3K-Akt and Glycolysis/Gluconeogenesis. Furthermore, transcriptional patterns of 9 DEGs (Dnajb1, Traf6, Insig1, Gadd45g, Hdac6, Fkbp4, Serpine1, Pfkp and Galm), and 6 heat shock proteins (HSPs) (Hspa6, Hspb1, Hspd1, HSP90aa1, HSP90ab1 and Hsph1) were validated, as well as the protein pattern of HSP90AA1 via immunostaining and western blot. Taken together, heat stress could initiate immediate changes of heat shock-related genes, and reprogram transcriptome and signaling pathways affecting the viability, apoptosis and metabolite production of pig iSCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app