Add like
Add dislike
Add to saved papers

Identifying physiological traits of species resilience against environmental stress in freshwater mussels.

Ecotoxicology 2021 November
The advent of global warming events on already stressed organisms by pollution and loss of habitats raised concerns on the sustainability of local mussel populations. The purpose of this study was to study the physiology 6 commonly found species of freshwater mussels in the attempt to identify species at risk from global warming and pollution. The following species were examined for mass/length, energy metabolism, air survival and lipid peroxidation (LPO): Elliptio complanata (EC), Eurynia dilatata (ED), Pyganodon cataracta (PC), Pyganodon species (Psp), Lasmigona costata (LC) and Dreissena bugenis (DB). The data revealed that the estimated longevity of each species was associated with mussel mass, mitochondria electron transport (MET), temperature-dependent MET but negatively related with mitochondria levels in LPO and the colonization potential. The colonization potential was derived from the scaling of MET activity and mass, which confirmed that DB mussels are more invasive than the other species followed by Psp. Resistance to air emersion was significantly associated with longevity, mass and length and mitochondria LPO. Hence, organisms with low lifetimes, mass or length with high LPO are less able to survive for longer periods in air. In conclusion, longevity and air survival was positively associated with mass and energy metabolism but negatively with oxidative damage. This study proposes key markers in identifying species more at risk to contaminant stress, decreased water levels and global warming.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app