Add like
Add dislike
Add to saved papers

PGC-1α regulates myonuclear accretion after moderate endurance training.

The transcriptional demands of skeletal muscle fibres are high and require hundreds of nuclei (myonuclei) to produce specialised contractile machinery and multiple mitochondria along their length. Each myonucleus spatially regulates gene expression in a finite volume of cytoplasm, termed the myonuclear domain (MND), which positively correlates with fibre cross-sectional area (CSA). Endurance training triggers adaptive responses in skeletal muscle, including myonuclear accretion, decreased MND sizes and increased expression of the transcription co-activator peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). Previous work has shown that overexpression of PGC-1α in skeletal muscle regulates mitochondrial biogenesis, myonuclear accretion and MND volume. However, whether PGC-1α is critical for these processes in adaptation to endurance training remained unclear. To test this, we evaluated myonuclear distribution and organisation in endurance-trained wild-type mice and mice lacking PGC-1α in skeletal muscle (PGC-1α mKO). Here, we show a differential myonuclear accretion response to endurance training that is governed by PGC-1α and is dependent on muscle fibre size. The positive relationship of MND size and muscle fibre CSA trended towards a stronger correlation in PGC-1a mKO versus control after endurance training, suggesting that myonuclear accretion was slightly affected with increasing fibre CSA in PGC-1α mKO. However, in larger fibres, the relationship between MND and CSA was significantly altered in trained versus sedentary PGC-1α mKO, suggesting that PGC-1α is critical for myonuclear accretion in these fibres. Accordingly, there was a negative correlation between the nuclear number and CSA, suggesting that in larger fibres myonuclear numbers fail to scale with CSA. Our findings suggest that PGC-1α is an important contributor to myonuclear accretion following moderate-intensity endurance training. This may contribute to the adaptive response to endurance training by enabling a sufficient rate of transcription of genes required for mitochondrial biogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app