Add like
Add dislike
Add to saved papers

Improved Support Vector Machine Enabled Radial Basis Function and Linear Variants for Remote Sensing Image Classification.

Sensors 2021 June 29
Remote sensing technologies have been widely used in the contexts of land cover and land use. The image classification algorithms used in remote sensing are of paramount importance since the reliability of the result from remote sensing depends heavily on the classification accuracy. Parametric classifiers based on traditional statistics have successfully been used in remote sensing classification, but the accuracy is greatly impacted and rather constrained by the statistical distribution of the sensing data. To eliminate those constraints, new variants of support vector machine (SVM) are introduced. In this paper, we propose and implement land use classification based on improved SVM-enabled radial basis function (RBF) and SVM-Linear for image sensing. The proposed variants are applied for the cross-validation to determine how the optimization of parameters can affect the accuracy. The accuracy assessment includes both training and test sets, addressing the problems of overfitting and underfitting. Furthermore, it is not trivial to determine the generalization problem merely based on a training dataset. Thus, the improved SVM-RBF and SVM-Linear also demonstrate the outstanding generalization performance. The proposed SVM-RBF and SVM-Linear variants have been compared with the traditional algorithms (Maximum Likelihood Classifier (MLC) and Minimum Distance Classifier (MDC)), which are highly compatible with remote sensing images. Furthermore, the MLC and MDC are mathematically modeled and characterized with new features. Also, we compared the proposed improved SVM-RBF and SVM-Linear with the current state-of-the-art algorithms. Based on the results, it is confirmed that proposed variants have higher overall accuracy, reliability, and fault-tolerance than traditional as well as latest state-of-the-art algorithms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app