Add like
Add dislike
Add to saved papers

A biomechanically-guided planning and execution paradigm for osteoporotic hip augmentation: Experimental evaluation of the biomechanics and temperature-rise.

BACKGROUND: Augmentation of the proximal femur with bone cement (femoroplasty) has been identified as a potential preventive approach to reduce the risk of fracture. Femoroplasty, however, is associated with a risk of thermal damage as well as the leakage of bone cement or blockage of blood supply when large volumes of cement are introduced inside the bone.

METHODS: Six pairs of cadaveric femora were augmented using a newly proposed planning paradigm and an in-house navigation system to control the location and volume of the injected cement. To evaluate the risk of thermal damage, we recorded the peak temperature of bone at three regions of interest as well as the exposure time for temperature rise of 8 °C, 10 °C, and 12 °C in these regions. Augmentation was followed by mechanical testing to failure resembling a sideway fall on the greater trochanter.

FINDINGS: Results of the fracture tests correlated with those of simulations for the yield load (R2  = 0.77) and showed that femoroplasty can significantly improve the yield load (42%, P < 0.001) and yield energy (139%, P = 0.062) of the specimens. Meanwhile, temperature recordings of the bone surface showed that the areas close to the greater trochanter will be exposed to more critical temperature rise than the trochanteric crest and femoral neck areas.

INTERPRETATION: The new planning paradigm offers a more efficient injection strategy with injection volume of 9.1 ml on average. Meanwhile, temperature recordings of bone surfaces suggest that risk of thermal necrosis remains as a concern with femoroplasty using Polymethylmethacrylate.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app