Add like
Add dislike
Add to saved papers

Can nonlinear agrometeorological models estimate coffee foliation?

BACKGROUND: The loss of coffee leaves caused by the attack of pests and diseases significantly reduces its production and bean quality. Thus, this study aimed to estimate foliation for regions with the highest production of arabica coffee in Brazil using nonlinear models as a function of climate. A 25-year historical series (1995-2019) of Coffea arabica foliation (%) data was obtained by the Procafé Foundation in cultivations with no phytosanitary treatment. The climate data were obtained on a daily scale by NASA/POWER platform with a temporal resolution of 33 years (1987-2019) and a spatial resolution of approximately 106 km, thus allowing the calculation of the reference evapotranspiration (PET). Foliation estimation models were adjusted through regression analysis using four-parameter sigmoidal logistic models. The analysis of the foliation trend of coffee plantations was carried out from degrees-day for 70 locations.

RESULTS: The general model calibrated to estimate the arabica coffee foliation was accurate (MAPE = 2.19%) and precise (R2 adj  = 0.99) and can be used to assist decision-making by coffee growers. The model had a sigmoidal trend of reduction, with parameters ymax = 97.63%, ymin = 9%, Xo = 3517.41 DD, and p = 6.27%, showing that foliation could reach 0.009% if the necessary phytosanitary controls are not carried out.

CONCLUSION: Locations with high air temperatures over the year had low arabica coffee foliation, as shown by the correlation of -0.94. Therefore, coffee foliation can be estimated using degrees-day with accuracy and precision through the air temperature. It represents great ease because crop foliation can be obtained using only a thermometer. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app