Add like
Add dislike
Add to saved papers

Performance and reference data in the jump squat at different relative loads in elite sprinters, rugby players, and soccer players.

The aims of this study were to compare the outcomes and provide reference data for a set of barbell mechanical parameters collected via a linear velocity transducer in 126 male sprinters (n = 62), rugby players (n = 32), and soccer players (n = 32). Bar-velocity, bar-force, and bar-power outputs were assessed in the jump-squat exercise with jump-squat height determined from bar-peak velocity. The test started at a load of 40% of the athletes' body mass (BM), and a load of 10% of BM was gradually added until a clear decrement in the bar power was observed. Comparisons of bar variables among the three sports were performed using a one-way analysis of variance. Relative measures of bar velocity, force, and power, and jump-squat height were significantly higher in sprinters than in rugby (difference ranging between 5 and 35%) and soccer (difference ranging between 5 and 60%) players across all loads (40-110% of BM). Rugby players exhibited higher absolute bar-power (mean difference = 22%) and bar-force (mean difference = 16%) values than soccer players, but these differences no longer existed when the data were adjusted for BM (mean difference = 2.5%). Sprinters optimized their bar-power production at significantly greater relative loads (%BM) than rugby (mean difference = 22%) and soccer players (mean difference = 25%); nonetheless, all groups generated their maximum bar-power outputs at similar bar velocities. For the first time, we provided reference values for the jump-squat exercise for three different bar-velocity measures (i.e., mean, mean propulsive, and peak velocity) for sprinters, rugby players, and soccer players, over a wide range of relative loads. Practitioners can use these reference values to monitor their athletes and compare them with top-level sprinters and team-sport players.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app