Add like
Add dislike
Add to saved papers

Low temperature pickling regeneration process for remarkable enhancement in Cu(II) adsorptivity over spent activated carbon fiber.

Chemosphere 2021 May 14
In this paper, a simple and efficient regeneration technology of low-temperature pickling regeneration process is proposed for Cu(II)-adsorbed activated carbon fiber felts (ACFFs). The regeneration process mainly uses the strong oxidation of acidic regenerant above boiling point to regenerate ACFFs in a confined space. With no demand for high temperature and high pressure, the regeneration process achieves a high efficiency regeneration and a remarkable enhancement of Cu(II) adsorptivity simultaneously for Cu(II)-adsorbed ACFFs. After parameter optimization, the pickling temperature of 383 K, pickling time of 3 h and HNO3 concentration of 150 g/L are adopted as optimum process parameters for the reutilization of ACFFs. The regeneration rates of ACFFs in five cycles are maintained at 424.08%-829.59%. Analytical results show that the enhancement of Cu(II) adsorptivity is mainly caused by the remarkable enhancement of specific surface area (increased by 106.08%), micropore volume (increased by 102.17%) and more abundant surface chemical structure (particularly carboxyl and nitro group) after treated by the regeneration process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app