Add like
Add dislike
Add to saved papers

Exposure to environmental concentrations of fipronil induces biochemical changes on a neotropical freshwater fish.

Fipronil is a broad-use insecticide with severe toxicity to fish. Biomarkers responses and bioaccumulation were evaluated on Prochilodus lineatus after exposure to environmentally relevant concentrations of fipronil (0.5 μg L-1 , 9 μg L-1 , and 100 μg L-1 ) in a prolonged flow-through assay and ex vivo gills short-term exposition. Lipid peroxidation (LPO), oxidatively modified proteins (PO), the activity of superoxide dismutase (SOD), the content of reduced glutathione (GSH), antioxidant capacity against peroxyles (ACAP), and acetylcholinesterase (AChE) were evaluated. Besides, levels of fipronil and metabolites were analyzed by GC-ECD. At the end of the flow-through assay, fipronil, Fp. sulfone and Fp. desulfinyl were detected in fish, being liver the target organ. Fipronil prolonged exposition promoted oxidative damage in lipids and proteins, alterations in the defense system and low-antioxidant capacity in organs of P. lineatus. The brain AChE activity was affected after prolonged exposition. Ex vivo gills exposition to fipronil promoted changes in antioxidant capacity and damage to lipids, providing a fast and suitable test to assess the pesticide exposure in fish. The results revealed that fipronil at environmental concentrations would be an inducer of oxidative stress in this fish, becoming a vulnerable species to the effects of fipronil in aquatic environments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app