Add like
Add dislike
Add to saved papers

PPAR-γ with its anti-fibrotic action could serve as an effective therapeutic target in T-2 toxin-induced cardiac fibrosis of rats.

T-2 toxin, the most virulent toxin produced by the Fusarium genus, is thought to be the main cause of fatal cardiomyopathy known as Keshan disease. However, the mechanisms of T-2 toxin-induced cardiac toxicity and possible targets for its treatment remain unclear. In the present study, male Wistar rats were administered with 2 mg/kg b. w. T-2 toxin (i.g.) and sacrificed on day 7 after exposure. The hematological indices (CK, LDH) and electrocardiogram were significantly abnormal, the ultrastructure of mitochondria in the heart was changed, and the percentage of collagen area was significantly increased in the T-2 toxin-treated group. Meanwhile, T-2 toxin activated the TGF-β1/Smad2/3 signalling pathway, and also activated PPAR-γ expression in rats and H9C2 cells. Further application of PPAR-γ agonist (pioglitazone) and antagonist (GW9662) in H9C2 cells revealed that the up-regulation of PPAR-γ expression induced by T-2 toxin is a self-preservation phenomenon, and increasing exogenous PPAR-γ can alleviate the increase in TGF-β1 caused by T-2 toxin, thereby playing a role in relieving cardiac fibrosis. These findings for the first time demonstrate that T-2 toxin can regulate the expression of PPAR-γ and that PPAR-γ has the potential to serve as an effective therapeutic target in T-2 toxin-induced cardiac fibrosis of rats.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app