Add like
Add dislike
Add to saved papers

UCHL3 promotes aerobic glycolysis of pancreatic cancer through upregulating LDHA expression.

BACKGROUND: Aerobic glycolysis has a pivotal role in the carcinogenic process. The current understanding of the functional role and mechanism of UCHL3-related aerobic glycolysis in pancreatic cancer is far from comprehensive, therefore requires an in-depth analysis on this aspect.

METHODS: In the present research, the expressions of ubiquitin carboxyl-terminal hydrolase L3 (UCHL3), lactate dehydrogenase A (LDHA) and Forkhead box protein M1 (FOXM1) were detected by qRT-PCR, Western blot and immunohistochemistry. The effects of UCHL3 knockdown or overexpression on pancreatic cancer cells were examined by determining cell viability and colony formation. Aerobic glycolysis was assessed according to glucose uptake, lactic acid production, and lactate dehydrogenase (LDH) activity. Dual-luciferase reporter assay was performed to detect LDHA promoter activity.

RESULTS: The results showed that UCHL3 expression was significantly increased in the pancreatic cancer tissues and cells, and that knocking down UCHL3 noticeably inhibited cell viability and aerobic glycolysis. Further investigations revealed that LDHA expression was promoted by UCHL3 and could be reduced by shFOXM1, and that low-expressed LDHA partly reversed the inhibition of aerobic glycolysis induced by overexpressed UCHL3.

CONCLUSIONS: To conclude, this study demonstrates that UCHL3 plays a carcinogenic role by promoting aerobic glycolysis in pancreatic cancer, suggesting that UCHL3 may be a potential diagnostic and therapeutic target for the treatment of cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app