Add like
Add dislike
Add to saved papers

Automatic seizure detection using orthogonal matching pursuit, discrete wavelet transform, and entropy based features of EEG signals.

BACKGROUND AND OBJECTIVE: Epilepsy is a prevalent disorder that affects the central nervous system, causing seizures. In the current study, a novel algorithm is developed using electroencephalographic (EEG) signals for automatic seizure detection from the continuous EEG monitoring data.

METHODS: In the proposed methods, the discrete wavelet transform (DWT) and orthogonal matching pursuit (OMP) techniques are used to extract different coefficients from the EEG signals. Then, some non-linear features, such as fuzzy/approximate/sample/alphabet and correct conditional entropy, along with some statistical features are calculated using the DWT and OMP coefficients. Three widely-used EEG datasets were utilized to assess the performance of the proposed techniques.

RESULTS: The proposed OMP-based technique along with the support vector machine classifier yielded an average specificity of 96.58%, an average accuracy of 97%, and an average sensitivity of 97.08% for different types of classification tasks. Moreover, the proposed DWT-based technique provided an average sensitivity of 99.39%, an average accuracy of 99.63%, and an average specificity of 99.72%.

CONCLUSIONS: The experimental findings indicated that the proposed algorithms outperformed other existing techniques. Therefore, these algorithms can be implemented in relevant hardware to help neurologists with seizure detection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app