Add like
Add dislike
Add to saved papers

Strain-Mediated Giant Magnetoelectric Coupling in a Crystalline Multiferroic Heterostructure.

Multiferroic heterostructures based on the strain-mediated mechanism present ultralow heat dissipation and large magnetoelectric coupling coefficient, two conditions that require endless improvement for the design of fast nonvolatile random access memories with reduced power consumption. This work shows that a structure consisting of a [Pb(Mg1/3 Nb2/3 )O3 ]0.7 -[PbTiO3 ]0.3 (001) substrate on which a crystalline FeGa(001)/MgO(001) bilayer is deposited exhibits a giant magnetoelectric coupling coefficient of order 15 × 10-6 s m-1 at room temperature. That result is a 2-fold increment over the previous highest value. The spatial orientation of the magnetization vector in the epitaxial FeGa film is switched 90° with the application of electric field. The symmetry of the magnetic anisotropy is studied by the angular dependence of the remanent magnetization, demonstrating that poling the sample generates a switchable uniaxial magnetoelastic anisotropy in the film that overcomes the native low 4-fold magnetocrystalline anisotropy energy. Magnetic force microscopy shows that the switch of the easy axis activates the displacement of domain walls and the domain structures remain stable after that point. This result highlights the interest in single-crystalline structures including materials with large magnetoelastic coupling and small magnetocrystalline anisotropy for low-energy-consuming spintronic applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app