Add like
Add dislike
Add to saved papers

Efficient self-photo-degradation of cationic textile dyes involved triethylamine and degradation pathway.

Chemosphere 2020 December 6
Cationic textile dyes such as astrazon brilliant red (ABR), are frequently used in the textile industry and contaminait the water ecology. Photodegradation of such dyes in wastewater is considered as a promising method, while the existing approaches are usually involved complicated and costly materials as photocatalysts. Facial, effective and low-cost approaches for their decontamination are needed. What's more, the detailed decomposition path of ABR is not revealed. The present study shows that ABR could suffer effective self-photo-degradation under triethylamine treatment without a photocatalyst. Almost 100% of the dye degraded within 1 h under visible light irradiation. UV-vis, FTIR and UPLC-MS analysis conformed the degradation of ABR. Factors involved in the degradation system were investigated clearly. What's more, the accurate and detailed analysis of UV-vis, FTIR and UPLC-MS data combined with computational analysis revealed the decomposition process of ABR. Reactive oxygen species (ROS) was investigated from ROS trapping experiments and EPR measurements, which revealed that O2 - was the critical ROS in the degradation process, while 1 O2 and OH had slightly influence on the degradation progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app