Add like
Add dislike
Add to saved papers

Tibialis anterior electromyographic bursts during sleep in histamine-deficient mice.

Antihistamine medications have been suggested to elicit clinical features of restless legs syndrome. The available data are limited, particularly concerning periodic leg movements during sleep, which are common in restless legs syndrome and involve bursts of tibialis anterior electromyogram. Here, we tested whether the occurrence of tibialis anterior electromyogram bursts during non-rapid eye movement sleep is altered in histidine decarboxylase knockout mice with congenital histamine deficiency compared with that in wild-type control mice. We implanted six histidine decarboxylase knockout and nine wild-type mice to record neck muscle electromyogram, bilateral tibialis anterior electromyogram, and electroencephalogram during the rest (light) period. The histidine decarboxylase knockout and wild-type mice did not differ significantly in terms of sleep architecture. In both histidine decarboxylase knockout and wild-type mice, the distribution of intervals between tibialis anterior electromyogram bursts had a single peak for intervals < 10 s. The total occurrence rate of tibialis anterior electromyogram bursts during non-rapid eye movement sleep and the occurrence rate of the tibialis anterior electromyogram bursts separated by intervals < 10 s were significantly lower in histidine decarboxylase knockout than in wild-type mice. These data do not support the hypothesis that preventing brain histamine signalling may promote restless legs syndrome. Rather, the data suggest that limb movements during sleep, including those separated by short intervals, are a manifestation of subcortical arousal requiring the integrity of brain histamine signalling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app