Add like
Add dislike
Add to saved papers

Characterization of gastrointestinal transit and luminal conditions in pigs using a telemetric motility capsule.

Within preclinical research, the pig has become an important model in regulatory toxicology and pharmacokinetics, to assess oral dosage forms and to compare different formulation strategies. In addition, there are emerging application of the pig model to asses clinical dosing conditions in the fasted and fed state. In this study, the gastrointestinal transit conditions in male landrace pigs were studied with a telemetric motility capsule under fasted and postprandial conditions. The whole gut transit time (WGTT) was determined by administering a SmartPill® capsule to four landrace pigs, under both fasted and fed state conditions in a cross-over study design. Overall, this study found that small intestinal transit in landrace pigs ranged from 2.3 - 4.0 h, and was broadly similar to reported human estimates and was not affected by the intake conditions. Gastric emptying was highly variable and prolonged in landrace pigs ranging from 20 - 233 h and up to 264 h in one specific case. Under dynamic conditions pigs have a low gastric pH comparable to humans, however a high variability under fasted conditions could be observed. The comparison of the data from this study with a recent similar study in beagle dogs revealed major differences between gastric maximum pressures observed in landrace pigs and dogs. In the porcine stomach maximum pressures of up to 402 mbar were observed, which are comparable to reported human data. Intestinal maximum pressures in landrace pigs were in the same range as in humans. Overall, the study provides new insights of gastrointestinal conditions in landrace pigs, which can lead to more accurate interpretation of in vivo results obtained of pharmacokinetic studies in preclinical models. While small intestinal transit conditions, GI pH and pressures were similar to humans, the prolonged gastric emptying observed in pigs need to be considered in assessing the suitability of the pig model for assessing in vivo performance of large non-disintegrated oral drug products.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app