Journal Article
Review
Add like
Add dislike
Add to saved papers

Cholesteryl ester transfer protein inhibitors in precision medicine.

Dyslipidemia is associated with atherosclerosis and cardiovascular disease development, posing serious risks to human health. Cholesteryl ester transfer protein (CETP) is responsible for exchange of neutral lipids, such as cholesteryl ester and TG, between plasma high density lipoprotein (HDL) particles and Apolipoprotein B-100 (ApoB-100) containing lipoprotein particles. Genetic studies suggest that single-nucleotide polymorphism (SNPs) with loss of activity CETP is associated with increased HDL-C, reduced LDL-C, and cardiovascular risk. In animal studies, mostly in rabbits, which have similar CETP activity to humans, inhibition of CETP through antisense oligonucleotides reduced aortic arch atherosclerosis. Concerning this notion, inhibiting the CETP is considered as a promise approach to reduce cardiovascular events, and several CETP inhibitors have been recently studied as a cholesterol modifying agent to reduce cardiovascular mortality in high risk cardiovascular disease patients. However, in Phase III cardiovascular outcome trials, three CETP inhibitors, named Torcetrapib, Dalcetrapib, and Evacetrapib, did not provide expected cardiovascular benefits and failed to improve outcomes of patient with cardiovascular diseases (CVD). Although REVEAL trail has recently shown that Anacetrapib could reduce major coronary events, it was also shown to induce excessive lipid accumulation in adipose tissue; thereby, the further regulatory approval will not be sought. On the other hand, growing evidence indicated that the function of CETP inhibitors on modulating the cardiovascular events are determined by correlated single nucleotide polymorphism (SNP) in the ADCY9 gene. However, the underlying mechanisms whereby CETP inhibitors interact with the genotype are not yet elucidated, which could potentially be related to the genotype-dependent cholesterol efflux capacity of HDL particles. In the present review, we summarize the current understanding of the functions of CETP and the outcomes of the phase III randomized controlled trials of CETP inhibitors. In addition, we also put forward the implications from results of the trials which potentially suggest that the CETP inhibitors could be a promising precise therapeutic medicine for CVD based on genetic background.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app