Add like
Add dislike
Add to saved papers

Transtubular potassium gradient predicts kidney function impairment after adrenalectomy in primary aldosteronism.

BACKGROUND: In primary aldosteronism (PA), kidney function impairment could be concealed by relative hyperfiltration and emerge after adrenalectomy. We hypothesized transtubular gradient potassium gradient (TTKG), a kidney aldosterone bioactivity indicator, could correlate to end organ damage and forecast kidney function impairment after adrenalectomy.

METHODS: In the present prospective study, we enrolled lateralized PA patients who underwent adrenalectomy and were followed up 12 months after operation in the Taiwan Primary Aldosteronism Investigation (TAIPAI) registry from 2010 to 2018. The clinical outcome was kidney function impairment, defined as estimated glomerular filtration rate (eGFR) <60 ml/min/1.73 m2 at 12 months after adrenalectomy. End organ damage is determined by microalbuminuria and left ventricular mass.

RESULTS: In total, 323 patients [mean, 50.8 ± 10.9 years old; female 178 (55.1%)] were enrolled. Comparing pre-operation and post-operation data, systolic blood pressure, serum aldosterone, urinary albumin to creatinine ratio and eGFR decreased. TTKG ⩾ 4.9 correlated with pre-operative urinary albumin to creatinine ratio >50 mg/g [odds ratio (OR) = 2.42; p  = 0.034] and left ventricular mass (B = 20.10; p  = 0.018). Multivariate logistic regression analysis demonstrated that TTKG ⩾ 4.9 could predict concealed chronic kidney disease (OR = 5.42; p  = 0.011) and clinical success (OR = 2.90, p  = 0.017) at 12 months after adrenalectomy.

CONCLUSIONS: TTKG could predict concealed kidney function impairment and cure of hypertension in PA patients after adrenalectomy. TTKG more than 4.9 as an adverse surrogate of aldosterone and hypokalaemia correlated with pre-operative end organ damage in terms of high proteinuria and cardiac hypertrophy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app