Add like
Add dislike
Add to saved papers

(-)-Tetrahydroberberrubine∙acetate accelerates antioxidant potential and inhibits food associated Bacillus cereus in rice.

Food Chemistry 2020 August 27
A protoberberine alkaloid, (-)-tetrahydroberberrubine∙acetate (THBA) was assessed for its antioxidant potential and ability to inhibit the growth of a food hazard bacterium Bacillus cereus in vitro and in situ. THBA displayed significant and dose-dependent cellular antioxidant potential against hydrogen peroxide-induced oxidative stress in NIH 3T3 fibroblast cells and decreased the ROS levels as well as increased the expression levels of SOD1 and SOD2 enzymes. The inhibitory spectrum of THBA confirmed its mechanistic role in the disruption of the membrane integrity of B. cereus as evidenced by the results of time-inactivation, cell membrane integrity, NPN membrane uptake, membrane potential, and electron microscopy analyses. Moreover, THBA inhibited biofilm formation by B. cereus and disrupted pre-established biofilms on a glass surface. Furthermore, THBA was also able to inhibit B. cereus in raw rice with a significant amount of reduction in CFU counts, suggesting its potential role as a natural antioxidant and antimicrobial agent.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app