Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Homocysteine induces oxidative stress and ferroptosis of nucleus pulposus via enhancing methylation of GPX4.

Homocysteine (Hcy) is an amino acid involved in gene methylation. Plasma concentration of Hcy is elevated in the pathological condition hyperhomocysteinemia (HHcy), which increases the risk of disorders of the vascular, nervous and musculoskeletal systems, including chondrocyte dysfunction. The present study aimed to explore the role of Hcy in intervertebral disc degeneration (IVDD), using a range of techniques. A clinical epidemiological study showed that HHcy is an independent risk factor for human IVDD. Cell culture using rat nucleus pulposus cells showed that Hcy promotes a degenerative cell phenotype (involving increased oxidative stress and cell death by ferroptosis) which is mediated by upregulated methylation of GPX4. An in-vivo mouse 'puncture' model of IVDD showed that folic acid (which is used to treat HHcy in humans) reduced the ability of diet-induced HHcy to promote IVDD. We conclude that Hcy upregulates oxidative stress and ferroptosis in the nucleus pulposus via enhancing GPX4 methylation, and is a new contributing factor in IVDD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app