Add like
Add dislike
Add to saved papers

Divergent evolution and purifying selection of the Type 2 diabetes gene sequences in Drosophila: a phylogenomic study.

Genetica 2020 December
The recently developed phylogenomic approach provides a unique way to identify disease risk or protective allele in any organism. While risk alleles evolve mostly under purifying selection, protective alleles are evolving either under balancing or positive selection. Owing to insufficient information, authors employed the phylogenomic approach to detect the nature of selection acting on type 2 diabetes (T2D) genes in Drosophila genus using various models of CODEML utility of PAML. The obtained result revealed that T2D gene sequences are evolving under purifying selection. However, only a few sites in membrane proteins encoded via CG8051, ZnT35C, and kar, are significantly evolving under positive selection under specific scenarios, which might be because of positive or adaptive evolution in response to changing niche, diet or other factors. In the near future, this information will be highly useful in the field of evolutionary medicine and the drug discovery process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app