Add like
Add dislike
Add to saved papers

Perovskite Films with Reduced Interfacial Strains via a Molecular-Level Flexible Interlayer for Photovoltaic Application.

Advanced Materials 2020 August 10
Interface strains and lattice distortion are inevitable issues during perovskite crystallization. Silane as a coupling agent is a popular connector to enhance the compatibility between inorganic and organic materials in semiconductor devices. Herein, a protonated amine silane coupling agent (PASCA-Br) interlayer between TiO2 and perovskite layers is adopted to directionally grasp both of them by forming the structural component of a lattice unit. The pillowy alkyl ammonium bromide terminals at the upper side of the interlayer provide well-matched growth sites for the perovskite, leading to mitigated interface strain and ensuing lattice distortion; meanwhile, its superior chemical compatibility presents an ideal effect on healing the under-coordinated Pb atoms and halogen vacancies of bare perovskite crystals. The PASCA-Br interlayer also serves as a mechanical buffer layer, inducing less cracked perovskite film when bending. The developed molecular-level flexible interlayer provides a promising interfacial engineering for perovskite solar cells and their flexible application.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app