Add like
Add dislike
Add to saved papers

Self-Amplified Apoptosis Targeting Nanoplatform for Synergistic Magnetic-Thermal/Chemo Therapy In Vivo.

The low efficiency homing of nanomaterials in tumors remains a major challenge in nanomedicine. Inspired by the apoptosis targeting properties of phosphatidylserine (PS), a self-amplified apoptosis targeting nanoplatform (MNPs-ZnDPA/β-Lap) is fabricated combining Zn0.4 Co0.6 Fe2 O4 @Zn0.4 Mn0.6 Fe2 O4 nanoparticles (MNPs) with an excellent magnetic hyperthermia effect, a chemotherapeutic drug of β-lapachone (β-Lap) with the promotion of cell apoptosis, and the good apoptosis targeting moiety of Zn(II)-bis(dipicolylamine) (bis-ZnDPA) for PS. In an apoptotic 4T1 xenograft model, MNPs-ZnDPA/β-Lap can first accumulate in tumors by the EPR effect. The released β-Lap triggers the apoptosis of cancer cells in the tumor and increases the apoptotic target, which results in amplifying their apoptosis targeting properties. This self-amplified apoptosis targeting efficiency of MNPs-ZnDPA/β-Lap almost inhibits the growth of tumors with the synergistic magnetic-thermal/chemo therapy, which can offer a significant promise for targeting cancer theranostics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app