Add like
Add dislike
Add to saved papers

The sulfate metabolite of 3,3'-dichlorobiphenyl (PCB-11) impairs Cyp1a activity and increases hepatic neutral lipids in zebrafish larvae (Danio rerio).

Chemosphere 2020 July 12
The environmental contaminant 3,3'-dichlorobiphenyl (PCB-11) is widely detected in environmental samples, and this parent compound along with its metabolites 4-OH-PCB-11 and 4-PCB-11-Sulfate are detected in human serum. Our previous research in zebrafish (Danio rerio) embryos shows exposure to 20 μM PCB-11 inhibits Cyp1a enzyme activity and perturbs lipid metabolism pathways. In this study, wildtype AB embryos underwent acute exposures from 1 to 4 days post fertilization (dpf) to 0.002-20 μM 4-OH-PCB-11 or 0.2-20 μM 4-PCB-11-Sulfate, with and without co-exposures to 100 μg/L benzo[a]pyrene (B[a]P) or 5 nM 3,3',4,4',5-pentachlorobiphenyl (PCB-126), and were assessed for in vivo EROD activity and morphometrics. Chronic exposures from 1 to 15 dpf to assess lipid accumulation using Oil-Red-O staining were also conducted with 0.2 μM parent or metabolite compounds, alongside a co-exposure experiment of 0.002-0.2 μM 4-PCB-11-Sulfate and 10 μg/L B[a]P. For acute experiments, 2 and 20 μM 4-OH-PCB-11 was lethal but no Cyp1a or morphological effects were observed at lower concentrations; 20 μM 4-PCB-11-Sulfate significantly lowered the Cyp1a activity of B[a]P and PCB-126 but did not alter morphological development. For chronic experiments, 0.2 μM 4-PCB-11-Sulfate significantly increased lipid accumulation 30% in single exposures and 44% in co-exposures with B[a]P. Further long-term studies would better elucidate the effects of this contaminant, particularly in the context of environmentally-relevant mixtures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app