Add like
Add dislike
Add to saved papers

Bioanalytical method development and validation of a liquid chromatography-tandem mass spectrometry method for determination of β-lapachone in human plasma.

The purpose of this work was to develop and validate a rapid, sensitive and robust liquid chromatography tandem mass spectrometric method for the quantification of β-lapachone in human plasma and to use that method to analyze human clinical samples. Sample preparation for the developed method involved liquid-liquid extraction using ethyl acetate for extraction of β-lapachone and cryptotanshinone (internal standard) from human plasma. Chromatographic resolution was achieved on a Kinetex C18 column using a gradient elution and a chromatographic flow rate of 0.5 mL/min. The retention times of β-lapachone and cryptotanshinone were 1.98 and 2.28 min, respectively, and the method had a total run time of 4 min. Bioanalytical method validation was conducted in accordance with the United States Food and Drug Administration regulatory guidelines. The method was validated over 2 calibration ranges in order to support high- and low-dose clinical studies. Calibration curve-1 covered the range of 0.25-50 ng/mL and calibration curve-2 covered the range of 50-2000 ng/mL. The method was determined to be accurate (percent relative errors between -1.07 to 5.36 %), precise (percent relative standard deviations less than 7.4), and sensitive (LLOQ 0.25 ng/mL). β-lapachone was determined to be stable (% change from time = 0 between -11.6 and 12.6 %) across the autosampler, benchtop, freeze/thaw and long-term (63 days) stability studies. The validated bioanalytical method was employed to determine β-lapachone concentrations in human plasma samples from a clinical study.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app