Add like
Add dislike
Add to saved papers

Dual pH/ROS-Responsive Nanoplatform with Deep Tumor Penetration and Self-Amplified Drug Release for Enhancing Tumor Chemotherapeutic Efficacy.

Small 2020 August
Poor deep tumor penetration and incomplete intracellular drug release remain challenges for antitumor nanomedicine application in clinical settings. Herein, a nanomedicine (RLPA-NPs) is developed that can achieve prolonged blood circulation, deep tumor penetration, active-targeting of cancer cells, endosome/lysosome escape, and intracellular selectivity self-amplified drug release for effective drug delivery. The RLPA-NPs are constructed by encapsulation of a pH-sensitive polymer octadecylamine-poly(aspartate-1-(3-aminopropyl) imidazole) (OA-P(Asp-API)) and a ROS-generation agent, β-Lapachone (Lap), in micelles assembled by the tumor-penetration peptide internalizing RGD (iRGD)-modified ROS-responsive paclitaxel (PTX)-prodrug. iRGD could promote RLPA-NPs penetration into deep tumor tissue, and specific targeting to cancer cells. After internalization by cancer cells through receptor-mediated endocytosis, OA-P(Asp-API) can rapidly protonate in the endosome's acidic environment, resulting in RLPA-NPs escape from the endosome through the "proton sponge effect". At the same time, the RLPA-NPs micelle disassembles, releasing Lap and PTX-prodrug. Subsequently, the released Lap could generate ROS, consequently amplifying and accelerating PTX release to kill tumor cells. The in vitro and in vivo studies demonstrated that RLPA-NPs can significantly improve the therapeutic effect compared to control groups. Therefore, RLPA-NPs are a promising nanoplatform for overcoming multiple physiological and pathological barriers to enhance drug delivery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app