Add like
Add dislike
Add to saved papers

Synthesis, adsorption and molecular simulation study of methylamine-modified hyper-cross-linked resins for efficient removal of citric acid from aqueous solution.

Scientific Reports 2020 June 16
A series of methylamine-modified hyper-cross-linked resins were fabricated from chloromethylated polystrene-co-divinylbenzene by two continuous reactions (Friedel-Crafts alkylation and amination). The BET surface area and pore volume of the as-prepared resins took a positive correlation to the reaction time and temperature during alkylation reaction while lessened during amination process. When running batch adsorption experiments for adsorption of citric acid, the methylamine-modified resin named HM-65-2 showed higher adsorption capacity of 136.3 mg/g and selectivity of 6.98 (citric/glucose) than the precursor resins. The pseudo-second-order rate model fitted better than the pseudo-first-order model, implying the adsorption sites distributed on the resins surface tended to be heterogeneous. Subsequently, the interactions between citric acid and the resin were investigated by means of molecular simulation. Simulation result showed the addition of nitrogen-containing groups significantly enhanced the adsorption performance of citric acid. Lastly, the dynamic column experiments were performed to obtain the suitable operating conditions for the citric acid adsorption.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app