Add like
Add dislike
Add to saved papers

Changes in EEG complexity with neurofeedback and multi-sensory learning in children with dyslexia: A multiscale entropy analysis.

Multiscale entropy analysis (MSE) is a novel entropy-based approach for measuring dynamical complexity in physiological systems over a range of temporal scales. MSE has been successfully applied in the literature when measuring autism traits, Alzheimer's, and schizophrenia. However, until now, there has been no research on MSE applied to children with dyslexia. In this study, we have applied MSE analysis to the EEG data of an experimental group consisting of children with dyslexia as well as a control group consisting of typically developing children and compared the results. The experimental group comprised 16 participants with dyslexia who visited Ankara University Medical Faculty Child Neurology Department, and the control group comprised 20 age-matched typically developing children with no reading or writing problems. MSE was calculated for one continuous 60-s epoch for each experimental and control group's EEG session data. The experimental group showed significantly lower complexity at the lowest temporal scale and the medium temporal scales than the typically developing group. Moreover, the experimental group received 60 neurofeedback and multi-sensory learning sessions, each lasting 30 min, with Auto Train Brain. Post-treatment, the experimental group's lower complexity increased to the typically developing group's levels at lower and medium temporal scales in all channels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app