Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Protein tyrosine phosphatase 1B is involved in efficient type I interferon secretion upon viral infection.

Protein tyrosine phosphatase 1B (PTP1B, also known as PTPN1) is a negative regulator of the leptin and insulin signalling pathways. This phosphatase is of great interest as PTP1B-knockout mice are protected against the development of obesity and diabetes. Here, we provide evidence for a novel function of PTP1B that is independent of its phosphatase activity, but requires its localisation to the membrane of the endoplasmic reticulum. Upon activation of pattern recognition receptors, macrophages and plasmacytoid dendritic cells from PTP1B-knockout mice secrete lower amounts of type I interferon (IFN) than cells from wild-type mice. In contrast, secretion of the proinflammatory cytokines TNFα and IL6 was unaltered. While PTP1B deficiency did not affect Ifnb1 transcription, type I IFN accumulated in macrophages, suggesting a role for PTP1B in mediating secretion of type I IFN. In summary, we have uncovered that PTP1B positively regulates the type I IFN response by promoting secretion of key antiviral cytokines.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app