Add like
Add dislike
Add to saved papers

Propagation of goat putative spermatogonial stem cells under growth factors defined serum-free culture conditions.

Cytotechnology 2020 March 3
In the present study, we used a serum-free culture media to propagate goat putative spermatogonial stem cells (SSCs) and evaluated the effect of crucial growth factors on relative expression of some SSC markers and self-renewal related genes. The enriched SSCs were cultured on a homologous Sertoli cell feeder layer in KO-DMEM supplemented with 10% KOSR. Putative SSC colonies emerged between day 6 and 10 which were then characterized by the expression of numerous spermatogonial and pluripotency related markers. After 15 days of subculture, the relative mRNA expression study revealed that 40 ng/mL concentration of Glial cell line-derived neurotrophic factor (GDNF) upregulated the expression of BCL6B, ID4, PLZF, and UCHL1. Moreover, the supplementation of GDNF + bFGF up-regulated the expression of PLZF and BCL6B. UCHL1 expression was higher after addition of GDNF + LIF while, THY1 overexpressed in response to the addition of GDNF + CSF1. These results demonstrated that the goat SSCs were efficiently propagated using a KOSR based serum-free media and the growth factor supplementation markedly influences their gene expression profile.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app