Add like
Add dislike
Add to saved papers

Systemic Arterial Stiffness in New Diagnosed Idiopathic Pulmonary Arterial Hypertension Patients.

Objective: We suggested: 1) patients with idiopathic pulmonary hypertension (IPAH) have active factors which could damage not only the pulmonary but systemic arteries too as in arterial hypertensive patients; 2) if these changes were present, they might correlate with other parameters influencing on the prognosis. This study is the first attempt to use cardio-ankle vascular index (CAVI) for the evaluation of systemic arterial stiffness in patients with IPAH.

Methods: A total of 112 patients were included in the study: group 1 consisted of 45 patients with new diagnosed IPAH, group 2 included 32 patients with arterial hypertension, and in the control group were 35 healthy persons adjusted by age. Right heart catheterization, ECG, a 6-minute walk test (6MWT), echocardiography, blood pressure (BP) measurement and ambulatory BP monitoring, pulse wave elastic artery stiffness (PWVe; segment carotid-femoral arteries) and muscular artery stiffness (PWVm; segment carotid-radial arteries), CAVI, and N-terminal pro-B-type natriuretic peptide (NT-proBNP) level were provided. The Spearman correlation, a linear regression and multivariable binary logistic analysis were performed to indicate the predictors associated with PWV and CAVI.

Results: The groups were adjusted for principal characteristics influenced on arterial stiffness. IPAH patients had significantly (P<0.001 for all) shorter 6MWT distance and higher Borg dyspnea score than the patients with arterial hypertension (systolic/diastolic BP = 146.1±10.7/94.2±9.8 mmHg) and the control group = 330.2±14.6 vs 523.8±35.3 and 560.9±30.2 m respectively and 6.2±1.8 vs 1.2±2.1 and 0.9±2.8 points. The PWVm and PWVe were the highest in hypertensive patients (10.3±1.5 and 11.42±1.70 m/s). The control group and IPAH did not have significant differences in aorta BP, but PWVm/PWVe values were significantly (P<0.003/0.008) higher in IPAH patients than in the control group (8.1±1.9/8.49±1.92 vs 6.63±1.34/7.29±0.87 m/s). The CAVIs on both sides were significantly lower in the healthy subjects (5.91±0.99/5.98±0.87 right/left side). Patients with IPAH did not differ from the arterial hypertension patients by CAVIs in comparison with the control group (7.40±1.32/7.22±1.32 vs 7.19±0.78/7.2±1.1 PWVe) did not correlate with any parameters except uric acid. PWVm correlated with uric acid (r=0.58, P<0.001), NT-proBNP (r=0.33, P=0.03) and male gender (r=0.37, P=0.013) at Spearman analysis, but not at multifactorial linear regression analysis. The CAVI correlated with age and parameters characterized functional capacity (6MWT distance) and right ventricle function (NT-proBNP, TAPSE) at Spearman analysis and with age and TAPSE at multifactorial linear regression analysis. At binary logistic regression analysis CAVI > 8.0 at right and/or left side had a correlation with age, 6MWT distance, TAPSE, but an independent correlation was only with age (β=1.104, P=0.008, CI 1.026-1.189) and TAPSE (β=0.66, P=0.016, CI 0.474-0.925).

Conclusion: In spite of equal and at normal range BP level, the age-adjusted patients with IPAH had significantly stiffer arteries than the healthy persons and they were comparable with the arterial hypertensive patients. Arterial stiffness evaluated by CAVI correlated with age and TAPSE in IPAH patients. Based on our results it is impossible to conclude the pathogenesis of arterial stiffening in IPAH patients, but the discovered changes and correlations suggest new directions for further studies, including pathogenesis and prognosis researches.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app