Add like
Add dislike
Add to saved papers

Preparation and characterization of epigallocatechin gallate, ascorbic acid, gelatin, chitosan nanoparticles and their beneficial effect on wound healing of diabetic mice.

The wounds of diabetic patients are difficult to heal, which could lead to a limb amputation or even death. The experiment aims to develop a new type of nanoparticles that could accelerate wound healing. Epigallocatechin gallate, ascorbic acid, gelatin and chitosan nanoparticles (EV NPS) were prepared by ion cross-linking method, and their properties were studied. The optimal formula ratio of EV NPS is Vc:EGCG:Gel:CS = 0.2:3:1:1. Transmission electron microscope (TEM) images show that it is a roughly uniform spherical nanoparticle with a diameter of 200 nm. ICR mice were intraperitoneally injected with streptozocin (STZ) to establish diabetic mice. Full-thickness excisional wounds were established on the back of mice. The results showed that EV NPS can promote wound healing in diabetic mice, and the mechanism may be through increasing collagen accumulation, promoting angiogenesis and reducing the infiltration of inflammatory cells. EV NPS may have potential application values for wound healing in diabetic mice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app