Add like
Add dislike
Add to saved papers

Epilepsy in a melanocyte-lineage mTOR hyperactivation mouse model: A novel epilepsy model.

OBJECTIVE: To clarify the complex mechanism underlying epileptogeneis, a novel animal model was generated.

METHODS: In our previous research, we have generated a melanocyte-lineage mTOR hyperactivation mouse model (Mitf-M-Cre Tsc2 KO mice; cKO mice) to investigate mTOR pathway in melanogenesis regulation, markedly reduced skin pigmentation was observed. Very unexpectedly, spontaneous recurrent epilepsy was also developed in this mouse model.

RESULTS: Compared with control littermates, no change was found in either brain size or brain mass in cKO mice. Hematoxylin staining revealed no obvious aberrant histologic features in the whole brains of cKO mice. Histoimmunofluorescence staining and electron microscopy examination revealed markedly increased mTOR signaling and hyperproliferation of mitochondria in cKO mice, especially in the hippocampus. Furthermore, rapamycin treatment reversed these abnormalities.

CONCLUSIONS: This study suggests that our melanocyte-lineage mTOR hyperactivation mouse is a novel animal model of epilepsy, which may promote the progress of both epilepsy and neurophysiology research.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app