Add like
Add dislike
Add to saved papers

Role of Metallothionein-1 and Metallothionein-2 in the Neuroprotective Mechanism of Sevoflurane Preconditioning in Mice.

This study investigated the protective effects and mechanisms of sevoflurane preconditioning (SPC) on neurons in ischemic mice. After SPC, mice were subjected to middle cerebral artery occlusion (MCAO). Cerebral infarction area, cell apoptosis, and metallothionein-1 (MT-1) and metallothionein-2 (MT-2) expressions in MCAO mice were analyzed. Mouse primary neurons were isolated and cultured to determine the location of metallothioneins (MTs) using immunofluorescence. Neurons transfected with MT-siRNA, exogenous MTs, or sh-MTF-1 were subjected to SPC and/or oxygen-glucose deprivation (OGD), and MT-1/MT-2 expression and neurotoxin release were assayed. Meanwhile, neurons were treated with the nitric oxide donor SNAP, degraded SNAP, or the peroxide initiator paraquat, and alterations in MT-1/MT-2 expression and neurotoxicity release were observed. SPC attenuated neuronal injury and apoptosis in MCAO mice. SPC could protect neurons against OGD injury and resulted in upregulated MT-1/MT-2 expression. MT-siRNA transfection led to the downregulated expression of MT-1/MT-2 and increased neurotoxicity, and the expression patterns of these neurons were different from those of neurons transfected with exogenous MTs. The knockdown of MTs could hinder the protective effect of SPC against OGD. Pretreatment with SNAP or paraquat could increase MTF-1 expression in the nucleus of neurons, protecting against OGD injury. The inhibition of nitric oxide and peroxide inhibited the protective role of SPC in OGD by downregulating MTF-1 expression. sh-MTF-1 transfection downregulated MT-1/MT-2 expression and enhanced neurotoxicity in neurons. SPC confers neuroprotection in focal cerebral ischemia mouse models by upregulating the expression of MT-1 and MT-2 by activating NO and peroxide and increasing MTF-1 expression in the nucleus.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app