Journal Article
Review
Add like
Add dislike
Add to saved papers

Ubiquitination and E3 Ubiquitin Ligases in Rare Neurological Diseases with Comorbid Epilepsy.

Neuroscience 2020 January 22
Ubiquitination is a post-translational modification that can dynamically alter the function, degradation and transport of a protein, as well as its interaction with other proteins, and activity of an enzyme. Dysfunctional ubiquitination is detrimental to normal cellular functions, and can result in severe diseases. Over the last decade, although much research has focused on deciphering the role of the ubiquitination/ubiquitin proteasome system (UPS) in the onset and progression of various neurological disorders, the specific relationship between ubiquitination and various epilepsies has not been carefully reviewed. As an increasing amount of research has revealed the roles of ubiquitination in the trafficking of ion channels and the turn-over of synaptic receptors, it is crucial to take a deeper look into ubiquitination-associated epilepsy. Here, we review the role of ubiquitination in maintaining normal cellular activities in neurons and recent findings on the dysregulation of ubiquitination in epilepsy. We particularly focus on rare neurological disorders with comorbid epilepsy in the hope of drawing more attention to this area. Through categorizing epilepsy-associated E3 ubiquitin ligases and their substrates and discussing ubiquitination-related rare neurological disorders, we summarize where the field stands at the moment and what directions we should consider in the future.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app