Add like
Add dislike
Add to saved papers

The potential sensing molecules and signal cascades for protecting teleost fishes against lipopolysaccharide.

Lipopolysaccharide (LPS) is a classical pathogen-associated molecular pattern that can trigger strong inflammatory response mainly by TLR4-mediated signaling pathway in mammals, but the molecular mechanism of anti-LPS immunity is unclear in teleost fishes. In this study, we analyzed the gene expression features based on transcriptome analysis in Schizothorax prenanti (S. prenanti), after stimulation with two sources of LPS from Aeromonas hydrophila and Escherichia coli (Ah. LPS and Ecoli. LPS). 921 different expression genes (DEGs) after Ah. LPS stimulation and 975 DEGs after Ecoli.LPS stimulation were acquired, but only 706 and 750 DEGs were successfully annotated into the databases, respectively. Both of two groups of DGEs were significantly enriched into immune-related pathways by KEGG enrichment analysis, such as "Toll-like receptor signaling pathway", "Cytokine-cytokine receptor interaction" and "JAK-STAT signaling pathway". The annotated DEGs from Ah. LPS and Ecoli. LPS stimulation shared 470 DEGs, including 88 immune-related DEGs (IRGs) identified mainly by KEGG enrichment to immune-related signaling pathways. Among the shared IRGs, four pattern-recognition genes (TLR5, TLR25, PTX3 and C1q) were induced with high expression foldchange, and IFN-γ and relative genes also showed higher expression levels than control. Meanwhile, inflammatory signals were highlighted by upregulating the expression of inflammatory cytokines (IL-1β, IL-10 and IL-8). Moreover, some non-shared IRGs (including TLR2 and TLR4) were identified, suggesting that different sources of LPS own different potentials for the induction of immune gene expression. In conclusion, TLR5, TLR25, PTX3 and C1q may function as the sensing molecules to catch the invasion signal of LPS. The anti-LPS immune response may be involved into TLR25/TLR5-mediated inflammatory signals that regulate subsequently the activation of PTX3/C1q-modulated complement pathway upon the induction of PTX3 expression, and the crosstalk between IFN-γ and TLR signaling pathways in teleost fishes. This study will contribute to further explore the molecular mechanism of LPS-induced immunity in teleost fishes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app