Add like
Add dislike
Add to saved papers

PolyI:C Upregulated CCR5 and Promoted THP-1-Derived Macrophage Chemotaxis via TLR3/JMJD1A Signalling.

Cell Journal 2020 October
OBJECTIVE: This study aimed to evaluate the specific roles of polyinosinic:polycytidylic acid (polyI:C) in macrophage chemotaxis and reveal the potential regulatory mechanisms related to chemokine receptor 5 ( CCR5 ).

MATERIALS AND METHODS: In this experimental study, THP-1-derived macrophages (THP1-Mφs) induced from THP- 1 monocytes were treated with 25 μg/mL polyI:C. Toll-like receptor 3 ( TLR3 ), Jumonji domain-containing protein (JMJD)1A, and JMJD1C small interfering RNA (siRNAs) were transfected into THP1-Mφs. Quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR) was used to detect the expression levels of TLR3 , CCR5 , 23 Jumonji C domain-containing histone demethylase family members, JMJD1A , and JMJD1C in THP1-Mφs with different siRNAs transfections. Western blot was performed to detect JMJD1A , JMJD1C, H3K9me2, and H3K9me3 expressions. A transwell migration assay was conducted to detect THP1-Mφ chemotaxis toward chemokine ligand 3 (CCL3). A chromatin immunoprecipitation (ChIP) assay was performed to detect H3K9me2-CCR5 complexes in THP1- Mφs.

RESULTS: PolyI:C significantly upregulated CCR5 in THP1-Mφs and promoted chemotaxis toward CCL3 (P<0.05); these effects were significantly inhibited by TLR3 siRNA (P<0.01). JMJD1A and JMJD1C expression was significantly upregulated in polyI:C-stimulated THP1-Mφs, while only JMJD1A siRNA decreased CCR5 expression (P<0.05). JMJD1A siRNA significantly increased H3K9me2 expression in THP1-Mφs but not in polyI:C-stimulated THP1-Mφs. The ChIP result revealed that polyI:C significantly downregulated H3K9me2 in the promoter region of CCR5 in THP1- Mφs.

CONCLUSION: PolyI:C can enhance THP1-Mφ chemotaxis toward CCL3 regulated by TLR3 /JMJD1A signalling and activate CCR5 expression by reducing H3K9me2 in the promoter region of CCR5 .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app