Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Improved Human Muscle Biopsy Method To Study Neuromuscular Junction Structure and Functions with Aging.

Reduced mobility and physical independence of elders has emerged as a major clinical and public health priority with extended life expectancy. The impact of the neuromuscular function on muscle activity and properties has emerged as a critical factor influencing the progress and outcome of muscle changes with aging. However, very little is known about the neuromuscular junctions (NMJs) in humans, in part due to technical constraints limiting the access to healthy, fresh neuromuscular tissue. Here, we describe a method, called Biopsy using Electrostimulation for Enhanced NMJ Sampling (BeeNMJs) that improves the outcome of muscle biopsies. We used local cutaneous stimulation to identify the area enriched with NMJs for each participant at the right Vastus lateralis (VL). The needle biopsy was then performed in proximity of that point. The BeeNMJs procedure was safe for the participants. We observed NMJs in 53.3% of biopsies in comparison with only 16.7% using the traditional method. Furthermore, we observed an average of 30.13 NMJs per sample compared to only 2.33 for the traditional method. Importantly, high-quality neuromuscular material was obtained whereby pre-, postsynaptic, and glial elements were routinely labeled, simultaneously with myosin heavy chain type I. The BeeNMJs approach will facilitate studies of NMJs, particularly in human disease or aging process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app