Add like
Add dislike
Add to saved papers

Numerical evaluation of cardiac mechanical markers as estimators of the electrical activation time.

Recent advances in the development of non-invasive cardiac imaging technologies have made it possible to measure longitudinal and circumferential strains at a high spatial resolution also at intramural level. Local mechanical activation times derived from these strains can be used as non-invasive estimates of electrical activation, in order to determine e.g. the origin of premature ectopic beats during focal arrhythmias or the pathway of reentrant circuits. The aim of this work is to assess the reliability of mechanical activation time markers derived from longitudinal and circumferential strains, denoted by ATell and ATecc , respectively, by means of three-dimensional cardiac electromechanical simulations. These markers are compared against the electrical activation time (ATv ), computed from the action potential waveform, and the reference mechanical activation markers derived from the active tension and fiber strain waveforms, denoted by ATta and ATeff , respectively. Our numerical simulations are based on a strongly coupled electromechanical model, including Bidomain representation of the cardiac tissue, mechano-electric (i.e. stretch-activated channels) and geometric feedbacks, transversely isotropic strain energy function for the description of passive mechanics and detailed membrane and excitation-contraction coupling models. The results have shown that, during endocardial and epicardial ectopic stimulations, all the mechanical markers considered are highly correlated with ATv , exhibiting correlation coefficients larger than 0.8. However, during multiple endocardial stimulations, mimicking the ventricular sinus rhythm, the mechanical markers are less correlated with the electrical activation time, because of the more complex resulting excitation sequence. Moroever, the inspection of the endocardial and epicardial isochrones has shown that the ATell and ATecc mechanical activation sequences reproduce only some qualitative features of the electrical activation sequence, The results have shown that, during endocardial and epicardial ectopic stimulations, all the mechanical markers considered are highly correlated with ATv , exhibiting correlation coefficients larger than 0.8. However, during multiple endocardial stimulations, mimicking the ventricular sinus rhythm, the mechanical markers are less correlated with the electrical activation time, because of the more complex resulting excitation sequence. Moroever, the inspection of the endocardial and epicardial isochrones has shown that the ATell and ATecc mechanical activation sequences reproduce only some qualitative features of the electrical activation sequence, such as the areas of early and late activation, but in some cases they might yield wrong excitation sources and significantly different isochrones patterns.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app