Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Microfluidic system for Caenorhabditis elegans culture and oxygen consumption rate measurements.

Lab on a Chip 2020 January 8
Mitochondrial respiration is a key signature for the assessment of mitochondrial functioning and mitochondrial dysfunction is related to many diseases including metabolic syndrome and aging-associated conditions. Here, we present a microfluidic Caenorhabditis elegans culture system with integrated luminescence-based oxygen sensing. The material used for the fabrication of the microfluidic chip is off-stoichiometry dual-cure thiol-ene-epoxy (OSTE+), which is well-suited for reliably recording on-chip oxygen consumption rates (OCR) due to its low gas permeability. With our microfluidic approach, it was possible to confine a single nematode in a culture chamber, starting from the L4 stage and studying it over a time span of up to 6 days. An automated protocol for successive worm feeding and OCR measurements during worm development was applied. We found an increase of OCR values from the L4 larval stage to adulthood, and a continuous decrease as the worm further ages. In addition, we performed a C. elegans metabolic assay in which exposure to the mitochondrial uncoupling agent FCCP increased the OCR by a factor of about two compared to basal respiration rates. Subsequent treatment with sodium azide inhibited completely mitochondrial respiration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app