Add like
Add dislike
Add to saved papers

Muscle cells, nerves, fibroblasts and vessels in the detrusor of the rat urinary bladder.

All the cells of rat detrusor muscle fall into one of five ultrastructural types: muscle cells, fibroblasts, axons and glia, and vascular cells (endothelial cells and pericytes). The tissue is ~79% cellular and 21% non-cellular. Muscle cells occupy 72%, nerves ~4% (1/3 axons, 2/3 glia), and fibroblast >3% of space. Muscle cells (up to 6 µm across and ~600 µm long, packed to almost 100,000 per mm2 ) have surface-to-volume ratio of 2.4 µm2 /µm3 ~93% of cell volume is contractile apparatus, 3.1% mitochondria and 2.5% nucleus. Cell profiles are irregular but sectional area decreases regularly towards either end of the cell. Muscle cells are gathered into bundles (the mechanical units of detrusor), variable in length and size, but of constant width. The musculature is highly compact (without fascia or capsule) with smooth outer surfaces and extensive association and adhesion between its cells. Among many types of intercellular contact and junction, digitations are very common, each muscle cell issuing minute finger-like processes that abut on adjacent cells. Sealed apposition are wide areas of specialized contact, possibly forming a chamber between two muscle cells, distinct from the extracellular space at large (stromal space). The innervation is very dense, virtually all intramuscular axons being varicose (including afferent ones). There are identifiable neuro-muscular junctions on each muscle cell, often several junctions on a single cell. There are also unattached terminals. Fibroblasts (involved in the production of collagen), ~1% of the total number of cells, do not make specialized contacts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app