Add like
Add dislike
Add to saved papers

Precise analysis of the concentrations and isotopic compositions of molybdenum and tungsten in geochemical reference materials.

Analytica Chimica Acta 2019 December 25
Molybdenum (Mo) is a redox-sensitive element and its concentrations and stable isotope compositions are widely used as a redox proxy in paleoceanography. Tungsten (W) is an emerging new isotope proxy, which has potential as a tracer for hydrothermal and early diagenetic processes. We present a new method for the precise and accurate analysis of Mo and W concentrations and isotope compositions from one single sample aliquot, thus saving mass of a sample and making the results directly comparable without concerns related to analytical or natural sample heterogeneity. After acid digestion, Mo and W are separated from the sample matrix using chelating resin NOBIAS Chelate-PA1 and anion exchange resin AG1 X8. Matrix removal is highly efficient: the remaining percentage is 10-2 to 10-5 % with respect to the initial weight. Subsequently, samples are measured for Mo and W concentrations and isotope compositions using multi-collector inductivity coupled plasma mass spectrometry (MC-ICP-MS). For mass bias correction and determination of concentrations, we use standard-sample bracketing and in addition an external correction method employing ruthenium (Ru) for Mo and rhenium (Re) for W. This double correction approach results in an external reproducibility of or below 0.10‰ (2SD) for δ98 Mo and 0.05‰ for δ186 W based on ICP standard solutions (NIST SRM 3134 lot No. 130418 for Mo and NIST SRM 3163 lot No. 080331 for W). We present data for Mo and W in 12 geological reference materials including igneous rocks, sedimentary rocks, marine sediments, and manganese nodules. For Mo our method reproduces published values for the geological standard materials within analytical error of published values. For W, although published data do not always agree for a given geological standard material, our data agree within error with more recent data. We interpret a cause of the deviations is due to unknown effects of a desolvating nebulizer for MC-ICP-MS.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app