Journal Article
Review
Add like
Add dislike
Add to saved papers

Multiple Physiological Signals Fusion Techniques for Improving Heartbeat Detection: A Review.

Sensors 2019 October 30
This paper presents a review of the techniques found in the literature that aim to achieve a robust heartbeat detection from fusing multi-modal physiological signals (e.g., electrocardiogram (ECG), blood pressure (BP), artificial blood pressure (ABP), stroke volume (SV), photoplethysmogram (PPG), electroencephalogram (EEG), electromyogram (EMG), and electrooculogram (EOG), among others). Techniques typically employ ECG, BP, and ABP, of which usage has been shown to obtain the best performance under challenging conditions. SV, PPG, EMG, EEG, and EOG signals can help increase performance when included within the fusion. Filtering, signal normalization, and resampling are common preprocessing steps. Delay correction between the heartbeats obtained over some of the physiological signals must also be considered, and signal-quality assessment to retain the best signal/s must be considered as well. Fusion is usually accomplished by exploiting regularities in the RR intervals; by selecting the most promising signal for the detection at every moment; by a voting process; or by performing simultaneous detection and fusion using Bayesian techniques, hidden Markov models, or neural networks. Based on the results of the review, guidelines to facilitate future comparison of the performance of the different proposals are given and promising future lines of research are pointed out.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app