Add like
Add dislike
Add to saved papers

Identification of the metallothionein gene family from cucumber and functional characterization of CsMT4 in Escherichia coli under salinity and osmotic stress.

3 Biotech 2019 November
Metallothionein (MT) proteins are low-molecular-weight, cysteine-rich and metal-binding proteins that play important roles in the maintenance of metal homeostasis and detoxification, but their roles in abiotic stress tolerance remain largely unknown. In this study, three MT family genes ( CsMT2 , CsMT3 and CsMT4 ) were identified in the cucumber genome. CsMT2, CsMT3 and CsMT4 possessed 14, 10, and 18 Cys residues, which were clustered into 2, 2, and 3 Cys-rich regions, respectively. Phylogenetic analysis of MTs from cucumber, Arabidopsis and soybean revealed that these MTs were clustered into four groups in accordance with the MT types (types 1-4). An analysis of the cis -acting regulatory elements revealed that a series of hormone-, stress-, and development-related cis -elements were present in the promoter regions of CsMT genes. Expression pattern analysis by RT-PCR showed that the CsMT genes exhibited different tissue expression patterns. CsMT2 showed relatively higher expression in stem, leaf, and flower; CsMT3 was mainly expressed in leaf, flower, and fruit, while CsMT4 was highly expressed in fruit and leaf. The qRT-PCR results showed that the CsMT genes were induced by various stress treatments including NaCl, PEG, and ABA, while CsMT4 displayed much higher expression levels in response to these stresses than CsMT2 and CsMT3 . Escherichia coli cells expressing CsMT4 exhibited higher salinity and osmotic tolerance compared with control cells, indicating the significant function of CsMT4 to confer tolerance to these stresses. These results lay a foundation for further research on the function of MT family genes in plant stress responses.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app