Add like
Add dislike
Add to saved papers

Complete genome sequence of Rhodococcus sp. NJ-530, a DMSP-degrading actinobacterium isolated from Antarctic sea ice.

3 Biotech 2019 October
Dimethylsulfide (DMS), a climatically important gas generated by dimethylsulfoniopropionate (DMSP) degradation, plays an important role in the global sulfur cycle and affects the global climate. Marine bacteria are the primary mediators of DMSP degradation and DMS production. Here, we present the complete genome sequence of Rhodococcus sp. NJ-530, isolated from Antarctic sea ice, which utilizes DMSP as a sole carbon and energy source, degrading DMSP into DMS. The genome of strain NJ-530 consists of 7371 protein-coding sequences (CDSs) with 54 tRNA genes and 15 rRNA operons as 5S-16S-23S rRNA. The strain has one circular chromosome of 6,408,544 bp with 6331 CDSs and 62.41% GC content. Genomic annotation revealed that Rhodococcus sp. NJ-530 may have a DMSP cleavage gene cluster, including dddD , dddB and dddC , suggesting the existence of the DddD-type DMSP cleavage pathway. The complete genome sequence of Rhodococcus sp. NJ-530 will provide useful information for better understanding of the molecular mechanism underlying marine DMSP degradation and Antarctic DMS production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app