Add like
Add dislike
Add to saved papers

Mechanism of Caulophyllum robustum maxim against rheumatoid arthritis using LncRNA-mRNA chip analysis.

Gene 2019 September 13
BACKGROUND: Caulophyllum robustum Maxim (CRM) is a medicinal compound of the Northeast and is commonly used in China for the treatment of rheumatic pain and rheumatoid arthritis (RA). A preliminary study found that CRM has good anti-inflammatory, analgesic and immunosuppressive effects. However, the specific links and targets for its function remain unclear. Our study aimed to provide a mechanism for the action of Caulophyllum robustum Maxim extraction (CRME) against RA and to establish a method for studying disease treatment using Chinese medicine.

METHODS: The 3- (4, 5- dimethyl- 2- thiazolyl)- 2, 5- diphenyl- 2- H- tetrazolium bromide (MTT) method was used to detect the toxicity of CRME in L929 cells, and the concentration ranges of the blank, model, and CRME drug groups were determined. Differentially expressed long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) were identified between the three groups. Gene Ontology (GO) and pathway enrichment analyses were performed to analyze the biological functions and pathways of the differentially expressed genes. Expression of Hist1h2bj, Hist1h2ba, Zfp36, Ccl3, Cxcl2 and Egr1 in the blank, model and drug groups was detected by quantitative real-time PCR (qRT-PCR), and the role of CRME on the above factors was determined to ensure consistency with the chip data.

RESULTS: A total of 329 significantly upregulated genes and 141 downregulated genes were identified between the blank and model groups. A total of 218 significantly upregulated genes and 191 downregulated genes were identified between the CRME drug group and model group. CRME has a significant role in multiple pathways involved in the occurrence and development of RA. Additionally, Hist1h2bj, Hist1h2ba, Zfp36, Ccl3, Cxcl2, and Egr1 were observed in modules of the lncRNA-mRNA weighted co-expression network, consistent with the chip data.

CONCLUSIONS: CRME has regulatory effects on inflammatory factors, the histone family, chemokines and their ligands that are related to RA-related cytokines, the RA pathway, the TNF signaling pathway, the Toll receptor-like signaling pathway, the chemokine signaling pathways and other pathways are related to the course of RA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app