Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, U.S. Gov't, P.H.S.
Review
Add like
Add dislike
Add to saved papers

Translating Molecular and Neuroendocrine Findings in Posttraumatic Stress Disorder and Resilience to Novel Therapies.

Biological Psychiatry 2019 September 16
Many biological systems are altered in association with posttraumatic stress disorder (PTSD) and resilience. However, there are only few approved pharmacological treatments for PTSD, and no approved medications to enhance resilience. This article provides a critical review of select neurobiological findings in PTSD and resilience, and also of pharmacologic approaches that have emerged from this work. The medications summarized involve engagement with targets in the adrenergic, hypothalamic-pituitary-adrenal axis, and neuropeptide Y systems. Other highlighted approaches involve the use of ketamine and 3,4-methylenedioxymethamphetamine-assisted psychotherapy, which recently surfaced as promising strategies for PTSD, though the neurobiological mechanisms underlying their actions, including for promoting resilience, are not yet fully understood. The former approaches fall within the broad concept of "rational pharmacotherapy," in that they attempt to directly target dysregulated systems known to be associated with posttraumatic symptoms. To the extent that use of ketamine and 3,4-methylenedioxymethamphetamine promotes symptom improvement and resilience in PTSD, this provides an opportunity for reverse translation and identification of relevant targets and mechanisms of action through careful study of biological changes resulting from these interventions. Promoting resilience in trauma-exposed individuals may involve more than pharmacologically manipulating dysregulated molecules and pathways associated with developing and sustaining PTSD symptom severity, but also producing a substantial change in mental state that increases the ability to engage with traumatic material in psychotherapy. Neurobiological examination in the context of treatment studies may yield novel targets and promote a greater understanding of mechanisms of recovery from trauma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app