Add like
Add dislike
Add to saved papers

Spontaneous Formation of Nanoparticles from Peptide-Vinyl Polymer Diblock Hybrids Prepared by RAFT Polymerization and Their Interactions with Cells.

ACS Omega 2019 May 32
Novel polymeric nanoparticles (NPs) with uniform sizes were prepared from peptide-vinyl polymer diblock hybrids by the self-organized precipitation method. Hybrid polymers of polystyrene (PSt) and tetrapeptide (cell-binding epitope RGDS, reverse SDGR, cationic KKKK, and anionic DDDD) were successfully synthesized by combining solid-phase peptide synthesis and reversible addition fragmentation chain transfer polymerization methods. Narrowly dispersed hybrid polymers (polydispersity index < 1.25, M n 14 000-17 000) were obtained. Altering the preparation conditions easily tuned the size and size distribution of the NPs. When the ζ-potentials for the NP suspensions were measured at pH 6.0, the obtained values corresponded to the net charge of each peptide segment. More importantly, the NPs could encapsulate fluorescent Nile red (NR) and magnetic iron oxide NP (MNP), which might be suitable for fluorescent imaging and magnet-induced patterning of cells, respectively. The interactions of NPs with cells (NIH/3T3 fibroblast) and the magnetic effects were examined for NR/MNP-loaded PSt-RGDS and -SDGR NPs. Both NPs were readily incorporated into cells, but only NR/MNP-loaded PSt-RGDS NP showed magnetic responsiveness in cell adhesion and cultures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app