Add like
Add dislike
Add to saved papers

Novel nanoplex-mediated plant transformation approach.

Here, a rapid and easy transformation by electroporation technique for gene transfer in plants using cell penetrating amino nanocomplex (nanoplex) has been demonstrated in Nicotiana . Nanoplex was prepared using cell penetrating amino acids (CPAs) such as poly-L-lysine (PLL) and Argenine (Arg), in combination with the gold nanoparticles (AuNPs). PLLs-modified nanoplex with zeta potential of 34.2 ± 1.22 mV charge showed 63.3% efficiency for gene transformation in plant cells as compared to 60% when modified with Arg and the zeta potential was found to be 30.0 ± 0.83 mV; whereas, the transformation efficiency without nanoplex was found to be 6.6%. The findings indicate that the zeta potential of positively charged nanocomplex (AuNPs/CPAs/DNA/CPAs) increases the transformation efficiency because of their ability to protect the DNA from electroporation wave and endogenous enzyme damage. Transformation was confirmed by GUS assay and amplification of npt gene. This technique may open up new possibilities of gene transfer in plants, which will enable to produce large number of transgenic plants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app